
Emergent Database Design: Liberating Database Development with Agile
Practices

Alan Harriman Paul Hodgetts Mike Leo
Caribou Lake Agile Logic Caribou Lake

aharriman@cariboulake.com phodgetts@agilelogic.com mleo@cariboulake.com

Abstract

Many agile projects do not apply agile practices to
their database development. Common wisdom dictates
that the entire data model be carefully designed up front
and protected from change thereafter.

We believed the common wisdom as well. But the
clash of traditional database practices and agile
development practices caused us significant pain, and
hamstrung our ability to deliver the most business value
in each iteration.

Once we recognized this pain, we abandoned the
conventional wisdom. Incrementally, we applied agile
discipline to our database development, eventually
reducing up-front design work to just-in-time work that
matched our 1 to 2 week development iterations.

This paper summarizes our experience.

Keywords
Evolutionary database design, Agile methodology,

Data Modeling, Agile DBA practices.

1. Our Story Begins

Our project started out with what was for most of us
unprecedented freedom. The programmer inmates were in
charge of the database asylum.

• We had complete control over our development
database instances.

• We were free to create development schemas we
needed for development and testing.

• We had a long period of development before we
had legacy production data that forced us to
address migration concerns when making database
changes.

• Our application was the sole consumer of the data
that we were storing. No other applications were
dependent on it.

• We did not have to coordinate with the
Customer’s IT department until we approached
our first production release.

Other aspects of our project situation:
• Our application was green field development of a

J2EE business workflow application in the
Criminal Justice domain.

• Many of our individual business objects tend to
not need very much intelligence but are more akin

to data transfer objects Therefore data design has
a big effect on the object model and vice versa.

• Our project was a team of 3 – 5 developers with a
part-time QA person. The roles of DBA and
Build Master were development team
responsibilities.

• Iterations were initially every three weeks,
decreasing to weekly which worked much better.
Once the code was released to production,
typically every other iteration produced a release
candidate.

• We used an Object-Relational Framework called
Java Relational Framework, JRF.

Our initial mindset is also relevant: we bought into
the myth that database design was a different kind of
development endeavor. We tacitly assumed that

• The Cost of Change for database changes was
much higher than cost of change for business
application software in general.

• Data models are inherently more stable than
business logic; hence there is less risk in up front
design.

Because of these unexamined preconceptions, we were
not immediately in a position to understand how best to
benefit from the freedom we had. Instead, we started
down the path of Big Design Up Front for our database
design. Here is some of our experience down that path.

2. Step One: Design and Build the Database

Project management wanted to establish the database
as the early foundation for our application. To this end,
senior data modeling and database design expertise was
brought in. This consultant conducted a series of data
modeling sessions with the customer and produced both
an entity relationship diagram and relatively complete set
of executable DDL (Data Definition Language) definitions
for the database. The breadth of the domain that was
explored and captured in these artifacts was staggering: in
some areas, the data model proceeded the actual
application programming by over a year.

Developers on the team with a traditional object-
oriented analysis background found this emphasis on data
analysis to be a very rich source of insight. Probing
entity relationships can be a powerful tool for coming to
grips with a new domain. The reverse, however, was not
the case; existing object analysis was not considered.

The power of executable DDL should not be
underestimated. We literally had our database created by
the push of an Ant task.

So, with our database in place, we were free to focus
on the application, making sure to hook it up to the
database as we went. As you may guess, this didn’t
exactly work out as planned. In fact, it created some
major difficulties, but along the way we learned some
very valuable lessons and came to embrace ongoing
database development as a fun part of learning the
domain and building the application.

3. The Developers’ Revolt

As carefully as the database was initially designed, we
inevitably came upon gaps. This was as expected. In
order to protect the integrity of the database design, we
thought that we had to keep some control over changes to
the database. As we didn’t have a dedicated DBA, we
created the role of DBA Proxy filled by a single developer
on the team. We had a process that went something like
this: The developer would request a change from the
DBA Proxy. The Proxy would review the request, update
the data model diagram, make the changes to the schema
and then check them in for the developer.

In practice, even though this process had a very low
latency, it nevertheless created a significant drag on our
velocity.

• One developer had to wait, another developer has
to switch contexts. Even short interruptions
made it more difficult to make database changes
test-first in the short cycles that create an efficient
rhythm

• Secondly, when the DBA Proxy would check in
the requested change, other developers were
sometimes negatively affected. For a short period
of time, any one else who picked up the checked-
in schema change would be affected by a broken
application in some way.

• Development velocity was being implicitly stolen
for the purpose of creating and maintaining
documentation that was not explicitly prioritized
by the customer as part of the set of stories
currently in play.

This process improved in a very natural way. At first,
developers took over making simple database additions
themselves, just to be able to complete their work more
efficiently through all layers of the application and
understand it. We found it very helpful to carry out
these database refactorings as a set of simple checklist
steps. The developer would then communicate the
changes to the DBA Proxy who would update the data
model diagram. Later, even this was documentation step
was abandoned.

There are some database changes that don’t fit this
simple process. When a new feature is being implemented
that requires a new family of persistent objects, several
members of the team will confer together to understand

the domain model, often postponing data structures that
are still speculative. Although writing the DDL needed
for most changes was a skill widely shared on the team,
creating and testing the DML (Data Manipulation
Language statements, such as updates, inserts, deletes)
needed to convert and preserve any affected existing data
occasionally required a much deeper skill set. Fortunately
we had those skills on our team.

In retrospect, we realize we had let a form of code
ownership creep into our project. Our fears that too many
initiators of change would push the database design into
chaos were just that, fears. To boost our courage in this
area, we increased our focus on several practices :

• Formalized Refactorings
• Test suites
• Database Coding Standards.

The benefits of distributed knowledge of the database
design and team empowerment exceeded our expectations.
Early success and enjoyment making simple additions led
to developers learning to handle increasingly complex
refactorings and to recognize when and how to clean up
obsolete areas of the DDL. The database was beginning
to evolve and improve as we learned and the sky had not
fallen.

4. Overloaded Entities

In the initial data analysis sessions mentioned above,
the modeling of the fields for many of the persistent
entities was given much attention. This approach resulted
in some entities containing a large number of fields.
Many of these fields were very speculative, being created
based on attempting to anticipate future needs, rather than
being driven by identified features and stories.

A striking example of this was an entity that
represents the street address of a client. Driven by a desire
to anticipate any sort of future reporting, mailing,
auditing and other needs, the address entity grew to
include a large number of fields. The official postal
specifications for an address were consulted, resulting in
fields that represented data items such as “pre-direction
abbreviation,” “street suffix” and “box number.” The
actual feature requirements, however, did not specify
many of these fields, requiring only simple address fields
such as “street address,” “city,” “state” and “zip code.” In
fact, the interface design based on the workflow analysis
focused on making an address quick to enter and did not
even include viewing and editing capability for the
speculative fields.

The superfluous fields were originally thought to
provide value by allowing future requirements to be
accommodated without necessitating schema changes. In
reality, however, the costs associated with carrying the
unused fields far outweighed the benefits. These costs
manifested in several areas.

The first and most noticeable cost was that the
database fields in turn required additional support in the
persistence framework and in the domain objects. Each

field required a mapping in the framework that involved
various field declarations and methods that implemented
the mapping. Each field required its counterpart in the
domain object. While it’s true that it was not necessary to
always map the database fields through to the framework
and domain objects, it was often difficult for the
developers to know when to map them and when not to
map them. Particularly with the more junior developers
who did not understand the requirements and design in
sufficient depth, it became more of an automatic activity
to simply map all database fields through to the domain
object. This development work was naturally not free, and
thus many needless hours were spent mapping fields that
were never used.

The second cost, and one that was perhaps more subtle
and insidious, was the cognitive cost associated with the
additional fields. By increasing the number of fields, the
“surface area” of the domain objects was increased,
requiring more developer effort to understand and work
with it. Each time new code was added to a domain
object, the developer had to consider each of the
superfluous fields to determine if they required support by
the new code. A senior developer who joined the team
mid-project frequently asked “what do these fields do,”
and “why are they present?” Not only did this confusion
cost the team productive time, but the time taken to
explain the justification for the superfluous fields
detracted from productivity as well.

During the team’s retrospectives, the issue of the
superfluous database fields began to receive greater and
greater attention. After consideration, the team decided to
take action. Some of the action was reactive, involving
refactoring and clean-up, while some was proactive,
involving changes to the way the team approached new
database development.

On the reactive side, the team agreed to incrementally
remove as many superfluous database fields as possible.

Not wanting to significantly detract from the delivery
of business value, the team chose an approach where
existing domain objects were scrubbed as they were
touched when implementing new stories. If superfluous
fields were found, they were targeted for removal. In most
cases, the fields could be immediately removed with the
effects limited to the domain object and its associated
mapping code and schema scripts. In some cases, there
were ancillary effects requiring more extensive work. If
necessary, the team queued up significant refactoring and
clean-up work and introduced them as separate stories that
were scheduled along with the feature development.
When the development team is not empowered as we were
to refactor the database, these benefits are hard to realize.

On the proactive side, the team agreed to constrain
future data and schema design to accommodate only
features and requirements that were currently identified.
The team refrained from speculative data and schema
design. While the team agreed this was “the right thing to
do,” in practice it was at times difficult to unlearn years
of up-front data and schema design practice. Bolstered by

the supporting practices of collocation and paired
development, the team was able to create an internal
system of checks and balances among themselves. It
became rare that speculative design could manifest
without one or more team members challenging it.

The results of the team’s efforts were extremely
positive and almost immediately noticeable. Without the
burden of speculative data and schema design, story
estimates began to decrease. The team was able to deliver
more features, and thus business value to the customer.
Although the refactoring and clean-up efforts required
more time to demonstrate improvement, eventually the
effects were equally as significant. The cleaner domain
objects required less effort to work with, resulting in
further decreases in story estimates. But perhaps more
significantly, the increased clarity of the data and schema
design allowed the team to develop a deeper shared
understanding of the system data model, in turn allowing
each team member to better contribute to the overall
development of the system.

5. Crossing the Chasm: Transitioning to
Production

Initially, our project was in strictly development mode
without a production system to be concerned with.
Whenever a pair finished a feature, the rest of the team
was notified if it was necessary to re-create their schemas
using the project's “database creation scripts”. This
worked well, as the data in our databases wasn't important
and easily recreated. Furthermore, we could go fast and
gain confidence in the emerging database design and in
our growing refactoring skills.

However, the day came when the first phase of the
project was complete and ready to be utilized by the
customer. The remaining phases would enhance and
extend the first phase, but the customer did not want to
wait for the entire project to be complete before taking
advantage of the value already created. Additionally, the
development team wanted the production experience and
customer feedback.

We needed to develop a migration strategy that would
allow developers to incrementally migrate the database,
test those migrations, and keep migrations scripts for
different production releases separate.

Months before our projected first production release
date, we put additional steps in place to include the
migration of production data. Up to this point, our
database refactoring steps were basically the following:

1. Discuss the planned changes as a team or as a
pair.

2. Write one or more failing unit tests.
3. Make the planned schema changes in a local

development schema.
4. Add or refactor corresponding code in the data

access layer as necessary.
5. Make sure unit tests all pass. This includes

migrating test data that may be affected.

6. Check the changed database creation scripts and
application code changes into the project
repository.

7. Run the integration tests.
When production data must be migrated, the third step

above becomes more involved.
3b. Any changes to the schema must also be written

as a set of DDL statements that can be
incrementally applied to the production database,
e.g. CREATE TABLE, DROP TABLE, ALTER
TABLE statements.

3c. Data must be migrated to fit the new schema.
This step may both precede and follow (3b) as it
is important to preserve data that may be moved
due to a change in relationship. Data might need
to be unloaded to disk, massaged, then loaded
back into the database. DML statements to
execute these changes must be written and tested.

3d. The migration scripts must be run against a copy
of the current production database schema. The
resulting schema must then be compared to a
database schema created by running the creation
scripts.

We collected the migration DDL and DML statements
in a single migration script. This script has three uses.

1. At any time, developers could run the migration
script against a copy of the current production
schema. The resulting schema would could then
be compared to a schema created from the
database creation scripts.

2. After a production release is created, the
migration script is run against a copy of the
production database and subsequently used in
customer acceptance testing.

3. Obviously, its final use was during the actual
migration to a new production release in the
production environment.

When a new production build was created, the script
would be emptied in the repository's main code line. The
migration script was then free to evolve in the release
branch. If the release branch failed to be released into
production, the migration script could be merged back
into the main line for inclusion in the next release.

Migrating a production database for a new production
release needed to be nearly foolproof. Having to revert a
failed migration could incur a large project velocity loss.
To minimize this risk, we created automated procedures
and tools to test our migrations both for syntactic and
functional accuracy.

A particularly useful tool we developed was a database
schema comparison tool. It verifies the structure and
behavior of a database created by migrating the production
database would always match one created using the
database creation scripts.

During development and before each new production
release, we would run our migration script on a database
that was a snapshot of the current production database.

We would then create a reference schema using the
source-controlled DDL scripts a developer normally uses
to create a fresh database. This reference schema and the
migrated production snapshot were processed by a schema
comparison tool to verify that both schemas matched.

The schema comparison tool was developed because
there wasn’t a simple way to compare two databases on
the schema level. We weren't looking to prove two
databases contained the same data, but instead the same
structure.

• Things we wished to verify included:
• Were the same tables found in both databases?
• Did these tables have identical columns with

identical column names, data types, data length,
nullability, and default values?

• Did the tables have the same primary keys,
foreign keys and unique keys?

To be useful, the tool needed to break out schema
differences in detail: what didn't match, what was
missing, or what was extraneous. When we first started
using this tool, we were surprised at how subtle these
differences could be. The tool was evolved and adjusted
to provide the minimum number of false positives and
clear explanations as to how two schemas were
mismatched.

We believe our production strategies worked well for a
number of reasons:

1. Migration was integrated into development and
done by the developers. The business knowledge
and motivations behind the migration was kept
close to the change process. Traditionally,
database migration is left to a DBA who was
usually not involved in the day-to-day
development process. All the knowledge of “how
and why” the schema was changed has to either be
re-discovered by the DBA, or it need to be
carefully communicated to the DBA in his or her
context. This batch-oriented process leaves many
opportunities for lost or damaged knowledge
transfer and creates a bottleneck in the release
process.

2. Migration was done in small increments and
tested by someone who understood the change
motivation. When this is the case, all the agile
tools can be applied, including test-driven
development. Most of the developers used the
migration scripts to update one of their many
schemas, thus living with the results of their
migration strategies when writing tests and doing
developer testing with the actual application.
Since the schema comparison tool could run on
any two schemas and was readily available to the
team, it could be utilized to assure the incremental
migration changes would match the changes made
to the database creation scripts.

3. Individual migrations steps were integrated into
the automated build and deploy Ant tasks. Along

with checklists and a few manual conventions, the
migration process was well documented, uniform
from release to release, and relatively easy for
anyone to perform. This greatly aided the
deployment team, which was not involved in the
project. The Ant tasks were not only used in final
deployment, but in development and QA as well.
Consistency was paramount to controlling change,
and Ant served us well in that capacity.

4. The migration was further verified by customer
testing on a migrated snapshot of production
database. This not only tested our database
migration, but confirmed that the application's
mainframe, remote read-only database, remote file
system, and web services integration all worked
together seamlessly. It also verified scalability,
since the database was properly sized with realistic
content.

Some challenges remain. There were no safeguards to
prevent a migration script from being run twice against
the same schema. Usually, when this happens, the
database will report harmless errors, but this isn’t always
so. In practice, this has not backfired on us but we
acknowledge that being careful is not always enough. We
have often discussed the kind of versioning system we
would like. Such a system would associate a version
designation with the database schema and our migration
techniques would need to be enhanced to be able to detect
if a particular set of changes had already been applied.

6. Maintaining Data Integrity

We offer the following experiences with some of our
up front database design choices in three areas: the choice
of when to implement integrity constraints; data
concurrency issues; the naming of integrity constraints.

6.l. Integrity Constraints

In the early life of our project, we deferred putting
foreign key integrity constraints in place. We had two
principal lines of reasoning that were behind our decision:
First, integrity constraints made writing unit tests more
difficult. In order to test the persistence of individual
objects, we would have to create a test fixture with all the
parent objects as well. If delaying these constraints could
help us go faster early in the project, then perhaps that
was the prudent, simplest way to get to working, tested
software. Second, we believed that when constraints
were applied, only unit tests would be affected. We
considered the application code itself to be structured and
tested in such a way that data integrity could not be
violated. In other words, we didn’t think we were risking
the quality of the application code by delaying.

Fortunately, as we began to plan for our first
production release, we made room in our iteration plans
to catch up. We learned that data integrity constraints are

a case of Assume You Are Going to Need It and the cost
is much less when you pay as you go.

Finding all the needed constraints and writing them
after the fact was more work

Re-writing the unit test data fixtures was more work
after so many tests were written that didn’t respect
integrity constraints.

We did discover a few holes in our application logic
that violated data integrity. Although we weren’t writing
explicit tests for this, we nevertheless thought we had it
covered. In retrospect, testing for data integrity with
application unit tests would be very expensive and
unnecessary since this functionality is well-tested by the
RDBMS vendor.

Now, whenever we make any database changes,
integrity constraints are considered and implemented
whenever they apply. It’s just part of our process. The
initial pain of having to create more complex test data has
largely been mitigated by refactoring to a more reusable
set of test data fixtures, a welcome discipline that has
paid for itself in many other ways as well.

6.2. Data Concurrency Issues

Because of the multi-user, workflow nature of our
application, we knew that data collisions could occur. An
early technical spike revealed that optimistic locking was
an appropriate strategy and that our O/R framework would
support it, with a little help.

However, we thought that this was something we
could implement at low cost at any point in our project,
so we postponed implementation in favor of other
seemingly more important business stories. It seemed the
agile thing to do: deliver business value with each
iteration as prioritized by the customer.

As the project matured, we set aside some time to
finally implement our concurrency policy. To our
surprise, we learned that certain parts of the application
had to be re-designed to make the locking mechanism
work even in cases where true concurrency was not
involved. Other parts needed redesigning because the
persistence framework couldn't properly detect locking
violations. In particular, using our O/R persistence
framework, it was possible to perform a sequence of
persistence operations that could confuse the optimistic
locking checks. Thus, when we did turn on optimistic
locking, it caused the application to break at each one of
these places. Now we had a bigger problem than we had
budgeted time for. We had to postpone this
implementation yet again, this time involuntarily.

Serious defects had crept into our application
underneath our unit-testing radar. We were forced to
schedule a major story in one of our iterations to clear
this up.

In retrospect, we paid too high a price for our
concurrency protection by delaying it. Data concurrency
did not prove to be a speculative feature; we understood
both its importance and the appropriate implementation

from the outset and this did not change throughout the
application development lifecycle.

We also learned that concurrency is difficult to test in
unit tests. This is another kind of protection better left to
the database.

6.3. Naming Integrity Constraints

Initially, we let the database name our referential
constraints. This was the way we initially learned to
create constraints and it seemed to have some advantages
in simpler DDL syntax.

However, since we were regularly refactoring table
relationships, we needed to modify integrity constraints,
possibly dropping them temporarily or modifying them
permanently. Un-named constraints are difficult to
specify in portable DDL; this makes many types of
database changes very difficult. Furthermore,
anonymous constraints were making debugging a chore.
The database was telling us something important but the
system-generated constraint names imbedded in the
messages were difficult to trace.

Tracking down a constraint violation like the
following requires querying the system catalog: not quick
and not a widely held skill.

01:05:12 [INSERT - 0 rows, 1.072
sec] ORA-00001: unique constraint
(MAL.SYS_C0055396) violated
As a team we decided to make named constraints part

of our practice. Because we were a collocated team
programming in pairs, the knowledge to support this
practice was quickly gained, disseminated and
incorporated into our standards.

Dropping a named constraint is extremely easy and
readable:

ALTER TABLE supervision_file
 DROP CONSTRAINT
pk_supervision_file_sfile_id;

Tracking down a constraint violation message like the
following is a piece of cake.

01:05:12 [INSERT - 0 rows, 1.072
sec] ORA-00001: unique constraint
(MAL.UNQ_SFILE_SFILE_ID) violated

7. Retrospective

Building the application around a large pre-built
database schema proved more painful than productive.
We learned we had to let go of existing, up-front database
implementation instead of trying to fit the application to
the original schema definition. While the up-front data
modeling exercise proved valuable in flushing out domain
knowledge and candidate entities, using it as the database
design prevented otherwise valuable Agile methods from
being fully utilized.

Freeing ourselves to create the database schema
incrementally allowed us to leverage our skills at

evolving and deepening the domain model and to see that
the data model effectively supported it. By employing
procedures and standards while automating processes and
testing, we were able to evolve our database design in the
same agile style as the application design.

We found data integrity to be a kind of “motherhood”
story for our application: Assume You Are Going to Need
It and build it in from the beginning. We now avoid any
sort of wait-and-do-it-all-at-once or separate story
scheduling for these concerns. We make them part of our
ongoing database change process.

We had fun. Being in charge of the database definitely
enabled us to deliver working software in much tighter
iterations and benefit from the feedback.

