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Session Overview

• These are our experiences as a 
B2B dot-com start up
– What we did
– What worked
– What didn’t work

• We’ll cover a few significant topics
• There will be Q&A time at the end

– (Hint: We like to talk about XP!)



Overview of Topics

• Escrow.com Overview
• Challenges Faced
• Projects and Products
• System Architecture
• Architecture & Design
• Java Technologies
• J2EE Technologies
• XML/XSLT Technologies
• Tools
• Development Process
• Human Factors



Escrow.com Overview

• Provider of Transaction Settlement Solutions
– Coordinates payment/settlement, shipping, 

inspection services
• Founded October 1999 as a spin off a 

major escrow & title transfer company
• Successive stream of products & services

– Escrow
– Open account, payment guarantees
– Will call, staged payments, deposits
– Global trade services



Service Model

• Implemented as a “BSP” (Business Service Provider)

– Hosted applications plus back-office services
– Integrated a back end system providing 

individual services
– Integrated as co-branded components of 

partner site
– Available a stand-alone site



Challenges Faced

• Chaotically changing requirements
– Immature, rapidly changing B2B marketplace

• Critical time-to-market
– Broad competition in emerging market
– Market share needed to execute business plan

• Quality and service availability
– Financial services require strict controls
– Critical component in client’s business process

• Scalability and flexibility
– Market projected to grow rapidly
– Unpredictable client business requirements



Projects and Products

• “Version 1” - Initial “gold rush” system
– Two-tiered architecture
– ASP/VB Script, MS SQL Server

• “Version 2” - The “ultimate” platform
– Multi-tiered architecture
– ASP front end, Java/EJB middle tier, Oracle
– XML for external interfaces and “glue”

• “Version 3” - Business value focus
– Multi-tiered architecture
– Full J2EE technology base, Oracle
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Architecture and Design

• Broad J2EE blueprints provide a framework for 
incremental designs

• J2EE architecture inherently supports scalability, 
reliability, availability

• Important to properly distribute business logic to 
facilitate maintenance

• Overall architecture has good subsystem 
boundaries, very flexible

• Design patterns very effective
– Notification services
– Model-View-Controller
– Factories, other GOF patterns



Architecture and Design
(the dark side)

• Problems arose mostly from failure to 
communicate, utilize and adhere to the 
architecture

• Bad distribution of business logic hurt 
maintainability and extensibility

• Short-changing design time created 
implementation problems

• Failure to manage dependencies resulted in 
brittle code

• Entropy needs to be attacked early to limit 
redesign and/or rewrite costs

• No substitute for design expertise



Java Technologies

• Java APIs offer a wide range of functionality
• Enables rapid development – less code
• Well known and documented
• Good support for object-oriented designs

– Interfaces enable decoupled components
– Reflection enables flexible factories

• Homogenous environment
• Easy to learn (for old C++ hacks)
• Popular and cool



Java Technologies (the dark side)

• Language missing some features 
(generics, enumerations, overloaded 
operators)

• Lots to learn
• Technology still developing



J2EE Technologies

• EJBs provide convenient transactional 
support

• Session beans work great for distributed 
components

• JSP/Servlets enable a homogeneous 
environment front-to-back

• Challenges mapping our access control 
needs to security model (JAAS?)

• New and cool



J2EE Technologies (the dark side)

• Entity beans
– EJB 1.x provides weak O-R mapping & finder 

support
– 1:1 beans brittle, subject to database changes
– Added a lot of extra code with minimal pay 

back
– Lifecycle model can result in performance hits
– Debugging can be difficult



J2EE Technologies (the dark side)

• HTML/JSP Java conflicts (tag libraries?)
• JSP errors found later in deployment
• Issues with cached JSP pages
• JDBC temptations to write lots of in-line 

code



XML/XSLT Technologies
• Used for:

– External integration interfaces
– Dynamic document generation
– Glue between ASP and Java
– XML Testing tool

• Well known format for data exchange
– Many standards emerging (ebXML, cXML, BizTalk, 

RosettaNet)
• Text-based, easy to learn and manipulate
• Good integration with Java, tools available
• Self-describing and validating (DTDs, schemas)
• XSLT provides powerful way to transform XML to 

a variety of formats with minimal coding
• New and cool



XML/XSLT Technologies
(the dark side)

• Emerging technology, competing 
standards, adoption is slow

• Standards are evolving, incompatibilities
• Hierarchical data model requires mapping 

to object model (e.g., Breeze, JAXB)
• Parsing and element access can be 

tedious and error prone
• XSLT is complex and cryptic
• Hard to find XML/XSLT gurus



Tools

• BEA WebLogic Server
– Solid server with good standards support

• Java IDEs (Jbuilder, Visual Café)
– IDEs primary value to have a consistent development 

environment
– Code generation not widely used to maintain control of 

code
• JIndent

– Enforces code formatting standards
• Jikes

– Much faster compiles, but some deviations from javac



Tools

• Apache Ant (future CruiseControl)
– Initial long build cycles lead to this tool
– Allows flexible builds and tasks
– Integrates testing with build (e.g., JUnit tasks)
– Ability to check out latest source code automatically
– Produces consistent build packages for deployment

• JUnit, HttpUnit (future Cactus)
– Vital for thorough unit testing and test first designs
– HTTPUnit enables testing of web conversations

• StarTeam Version Control
– Continuous Integration Possible with XP process
– Allow Integration in a distributed way



Development Process

• Defaulted to typical dot-com development
• Initial process was mostly ad hoc
• Attempts made to introduce elements of 

more formal methods (e.g, RUP)
– Value of process not appreciated by 

management or developers
– Process overhead considered too high



But that didn’t work…

• Several weeks per iteration for bug fixes
• Internal “customers” did not know product
• Specialists in disciplines and features
• Integration difficulties, manual and 

inconsistent testing
• Decreasing ability to respond to changing 

requirements
• Time between releases grew
• Development effort became a “black hole”



We Needed a New Process

• Needed customer focus to deliver most 
important features quickly

• Had to work in a changing business 
environment

• Searched for a lightweight, but rigorous 
process

• Process visibility needed across the 
organization



We Took On XP (not Windows XP)

• Up Front Training
– Initial JavaCon 2000 sessions
– XP Immersion for seed team
– On-site training and mentoring
– Self-directed research by developers

• Big bang cut-over
– Tried piecemeal adoption but not effective

• XP practices strictly followed
– Sink or swim approach



Growing Pains

• Resistance to change
• Environmental issues – common war room 

and shared cubes
• Legacy code issues with testing and 

refactoring
• Large team size created communication and 

overhead difficulties
• Personality conflicts
• YAGNI vs. BDUF
• Test first, micro-incremental development is 

hard



Everyday Practices
• All production code written in pairs

– Even when interviewing
• Test first design

– Test – run – code – run – refactor – run – repeat
– JUnit & HttpUnit

• Continuous Integration
• Developers

– Make their own estimate and set velocity on yesterday’s 
weather

– Pick their own tasks
– Pick their pair partner

• Work on related tasks to complete stories
• Iteration ends on end date; customer determines if 

task / story continues in next iteration



Tangible XP Benefits

• Able to sustain a consistent, rapid development 
pace

• Organization always knows the complete current 
project status

• Always have a correctly working, “shippable”
product at the end of every day

• Reduced QA cycles through intensive testing
– Pre-XP, 2 month development produced 3 week test 

and fix cycle with 200 reported bugs
– Post-XP, 2 month development produced 11 reported 

bugs



Tangible XP Benefits

• System is built to address immediate business 
requirements

• Short, incremental iterations deliver small 
working systems faster

• Clean, simple, documented code base enables 
quick understanding and easier changes

• Collective development provides easier cross 
training, mentoring, reduces truck factor, 
continuous product reviews

• Process enables small teams to be hyper-
productive



XP Lessons
• XP pushes business requirement orientation 

throughout organization
• Accountability for business and technical 

decisions placed on appropriate parties
• Tough adjustment for some developers used to 

more traditional development
– Developers give up private workspaces
– Need to become comfortable with exposing mistakes

• Emergent design is a viable alternative to big 
design up front 
– Less elegant initial solutions evolve, providing 

collective understanding of designs
– Overall blueprint (metaphor) guides evolution



Human Factors
• Job market in 1999/2000 very tight
• Qualified developers scarce

– Most have limited dot-com experience
– Object-oriented, J2EE expertise and experience limited
– Intelligence, motivation, curiosity vital

• Augmented in house talent with targeted 
consulting expertise
– Sun Java Center – Architecture, Java, J2EE, Process
– Object Mentor – XP Process
– Ultimate Knowledge – Java, QA
– eBuilt – Java
– iRise – WebLogic
– Aquent – UI Design, Web Development



Human Factors

• Team culture and dynamics important
– Group values (integrity, continuous 

improvement, intensity)
– Personalities and interactions

• Team building needs to be carefully 
considered
– Senior staff essential for core designs and 

mentoring
• Environment should foster encouragement 

and intelligent risk taking



If We Had to Do It Over Again

• Provide more up front training
– Object-oriented design principles
– J2EE architecture & technologies

• Dedicated time for continuous improvement
– Allocate specific time for project reviews
– Overcome inertia on tools, environment issues



If We Had to Do It Over Again

• Strong Focus on people & process
– Agile, rapid development process (e.g., XP)
– Careful team building, courage to restructure

• Don’t overbuild initial systems
– Focus on simple set of initial customer 

requirements
– Build into J2EE framework, but start simple





More Info

• Javaone@extremejava.com


