
eXtreme Development with 
the Java™ 2 Platform, 
Enterprise Edition (J2EE™)
Lessons from a B2B Start-up

Paul Hodgetts, Denise Phillips
Escrow.com
Oscar Chico
Sun Microsystems



Session Overview

• These are our experiences as a 
B2B dot-com start up
– What we did
– What worked
– What didn’t work

• We’ll cover a few significant topics
• There will be Q&A time at the end

– (Hint: We like to talk about XP!)



Overview of Topics

• Escrow.com Overview
• Challenges Faced
• Projects and Products
• System Architecture
• Architecture & Design
• Java Technologies
• J2EE Technologies
• XML/XSLT Technologies
• Tools
• Development Process
• Human Factors



Escrow.com Overview

• Provider of Transaction Settlement Solutions
– Coordinates payment/settlement, shipping, 

inspection services
• Founded October 1999 as a spin off a 

major escrow & title transfer company
• Successive stream of products & services

– Escrow
– Open account, payment guarantees
– Will call, staged payments, deposits
– Global trade services



Service Model

• Implemented as a “BSP” (Business Service Provider)

– Hosted applications plus back-office services
– Integrated a back end system providing 

individual services
– Integrated as co-branded components of 

partner site
– Available a stand-alone site



Challenges Faced

• Chaotically changing requirements
– Immature, rapidly changing B2B marketplace

• Critical time-to-market
– Broad competition in emerging market
– Market share needed to execute business plan

• Quality and service availability
– Financial services require strict controls
– Critical component in client’s business process

• Scalability and flexibility
– Market projected to grow rapidly
– Unpredictable client business requirements



Projects and Products

• “Version 1” - Initial “gold rush” system
– Two-tiered architecture
– ASP/VB Script, MS SQL Server

• “Version 2” - The “ultimate” platform
– Multi-tiered architecture
– ASP front end, Java/EJB middle tier, Oracle
– XML for external interfaces and “glue”

• “Version 3” - Business value focus
– Multi-tiered architecture
– Full J2EE technology base, Oracle



System Architecture
Customer
Partners

Web Interface

Views Controller

External System
Browser

Integration Server
(Client Side)

Integration Server
(Escrow.Com)

Integration Interface

Format
Driver

Format
Driver

Format
Driver

Interface Controller

Application APIs

Product A Product B Product C Common Profile Mgmt. Admin

Application Logic

Event
ProcessingValidations

Functional
Access
Control

Workflow Engine

Process Controller

Business Rules
Engine

Business Object Access Layer

Workflow
Configurations

Business Rule
Definitions

Account & User
Profiles Transactions

Service Connectors

Logistics Payment
Processing

PKI
Authority

Trust
Accounting

Service Provider Systems

System Services

Document
Generation

Notification
(eMail, fax,

XML)

Imaging &
Document

Mgmt.

Security

Audit
Logging

Financial
Calculations

System
Health &
Status

Activity
Supervision

&
Reminders

Exception
Handling

Back Office
Admin

Service Providers

Web Interface

Views Controller

Browser

Client Side

Interface/Presentation Tier

Application Tier

Business Process Tier

Resource Tier

Infrastructure Services Tier



Architecture and Design

• Broad J2EE blueprints provide a framework for 
incremental designs

• J2EE architecture inherently supports scalability, 
reliability, availability

• Important to properly distribute business logic to 
facilitate maintenance

• Overall architecture has good subsystem 
boundaries, very flexible

• Design patterns very effective
– Notification services
– Model-View-Controller
– Factories, other GOF patterns



Architecture and Design
(the dark side)

• Problems arose mostly from failure to 
communicate, utilize and adhere to the 
architecture

• Bad distribution of business logic hurt 
maintainability and extensibility

• Short-changing design time created 
implementation problems

• Failure to manage dependencies resulted in 
brittle code

• Entropy needs to be attacked early to limit 
redesign and/or rewrite costs

• No substitute for design expertise



Java Technologies

• Java APIs offer a wide range of functionality
• Enables rapid development – less code
• Well known and documented
• Good support for object-oriented designs

– Interfaces enable decoupled components
– Reflection enables flexible factories

• Homogenous environment
• Easy to learn (for old C++ hacks)
• Popular and cool



Java Technologies (the dark side)

• Language missing some features 
(generics, enumerations, overloaded 
operators)

• Lots to learn
• Technology still developing



J2EE Technologies

• EJBs provide convenient transactional 
support

• Session beans work great for distributed 
components

• JSP/Servlets enable a homogeneous 
environment front-to-back

• Challenges mapping our access control 
needs to security model (JAAS?)

• New and cool



J2EE Technologies (the dark side)

• Entity beans
– EJB 1.x provides weak O-R mapping & finder 

support
– 1:1 beans brittle, subject to database changes
– Added a lot of extra code with minimal pay 

back
– Lifecycle model can result in performance hits
– Debugging can be difficult



J2EE Technologies (the dark side)

• HTML/JSP Java conflicts (tag libraries?)
• JSP errors found later in deployment
• Issues with cached JSP pages
• JDBC temptations to write lots of in-line 

code



XML/XSLT Technologies
• Used for:

– External integration interfaces
– Dynamic document generation
– Glue between ASP and Java
– XML Testing tool

• Well known format for data exchange
– Many standards emerging (ebXML, cXML, BizTalk, 

RosettaNet)
• Text-based, easy to learn and manipulate
• Good integration with Java, tools available
• Self-describing and validating (DTDs, schemas)
• XSLT provides powerful way to transform XML to 

a variety of formats with minimal coding
• New and cool



XML/XSLT Technologies
(the dark side)

• Emerging technology, competing 
standards, adoption is slow

• Standards are evolving, incompatibilities
• Hierarchical data model requires mapping 

to object model (e.g., Breeze, JAXB)
• Parsing and element access can be 

tedious and error prone
• XSLT is complex and cryptic
• Hard to find XML/XSLT gurus



Tools

• BEA WebLogic Server
– Solid server with good standards support

• Java IDEs (Jbuilder, Visual Café)
– IDEs primary value to have a consistent development 

environment
– Code generation not widely used to maintain control of 

code
• JIndent

– Enforces code formatting standards
• Jikes

– Much faster compiles, but some deviations from javac



Tools

• Apache Ant (future CruiseControl)
– Initial long build cycles lead to this tool
– Allows flexible builds and tasks
– Integrates testing with build (e.g., JUnit tasks)
– Ability to check out latest source code automatically
– Produces consistent build packages for deployment

• JUnit, HttpUnit (future Cactus)
– Vital for thorough unit testing and test first designs
– HTTPUnit enables testing of web conversations

• StarTeam Version Control
– Continuous Integration Possible with XP process
– Allow Integration in a distributed way



Development Process

• Defaulted to typical dot-com development
• Initial process was mostly ad hoc
• Attempts made to introduce elements of 

more formal methods (e.g, RUP)
– Value of process not appreciated by 

management or developers
– Process overhead considered too high



But that didn’t work…

• Several weeks per iteration for bug fixes
• Internal “customers” did not know product
• Specialists in disciplines and features
• Integration difficulties, manual and 

inconsistent testing
• Decreasing ability to respond to changing 

requirements
• Time between releases grew
• Development effort became a “black hole”



We Needed a New Process

• Needed customer focus to deliver most 
important features quickly

• Had to work in a changing business 
environment

• Searched for a lightweight, but rigorous 
process

• Process visibility needed across the 
organization



We Took On XP (not Windows XP)

• Up Front Training
– Initial JavaCon 2000 sessions
– XP Immersion for seed team
– On-site training and mentoring
– Self-directed research by developers

• Big bang cut-over
– Tried piecemeal adoption but not effective

• XP practices strictly followed
– Sink or swim approach



Growing Pains

• Resistance to change
• Environmental issues – common war room 

and shared cubes
• Legacy code issues with testing and 

refactoring
• Large team size created communication and 

overhead difficulties
• Personality conflicts
• YAGNI vs. BDUF
• Test first, micro-incremental development is 

hard



Everyday Practices
• All production code written in pairs

– Even when interviewing
• Test first design

– Test – run – code – run – refactor – run – repeat
– JUnit & HttpUnit

• Continuous Integration
• Developers

– Make their own estimate and set velocity on yesterday’s 
weather

– Pick their own tasks
– Pick their pair partner

• Work on related tasks to complete stories
• Iteration ends on end date; customer determines if 

task / story continues in next iteration



Tangible XP Benefits

• Able to sustain a consistent, rapid development 
pace

• Organization always knows the complete current 
project status

• Always have a correctly working, “shippable”
product at the end of every day

• Reduced QA cycles through intensive testing
– Pre-XP, 2 month development produced 3 week test 

and fix cycle with 200 reported bugs
– Post-XP, 2 month development produced 11 reported 

bugs



Tangible XP Benefits

• System is built to address immediate business 
requirements

• Short, incremental iterations deliver small 
working systems faster

• Clean, simple, documented code base enables 
quick understanding and easier changes

• Collective development provides easier cross 
training, mentoring, reduces truck factor, 
continuous product reviews

• Process enables small teams to be hyper-
productive



XP Lessons
• XP pushes business requirement orientation 

throughout organization
• Accountability for business and technical 

decisions placed on appropriate parties
• Tough adjustment for some developers used to 

more traditional development
– Developers give up private workspaces
– Need to become comfortable with exposing mistakes

• Emergent design is a viable alternative to big 
design up front 
– Less elegant initial solutions evolve, providing 

collective understanding of designs
– Overall blueprint (metaphor) guides evolution



Human Factors
• Job market in 1999/2000 very tight
• Qualified developers scarce

– Most have limited dot-com experience
– Object-oriented, J2EE expertise and experience limited
– Intelligence, motivation, curiosity vital

• Augmented in house talent with targeted 
consulting expertise
– Sun Java Center – Architecture, Java, J2EE, Process
– Object Mentor – XP Process
– Ultimate Knowledge – Java, QA
– eBuilt – Java
– iRise – WebLogic
– Aquent – UI Design, Web Development



Human Factors

• Team culture and dynamics important
– Group values (integrity, continuous 

improvement, intensity)
– Personalities and interactions

• Team building needs to be carefully 
considered
– Senior staff essential for core designs and 

mentoring
• Environment should foster encouragement 

and intelligent risk taking



If We Had to Do It Over Again

• Provide more up front training
– Object-oriented design principles
– J2EE architecture & technologies

• Dedicated time for continuous improvement
– Allocate specific time for project reviews
– Overcome inertia on tools, environment issues



If We Had to Do It Over Again

• Strong Focus on people & process
– Agile, rapid development process (e.g., XP)
– Careful team building, courage to restructure

• Don’t overbuild initial systems
– Focus on simple set of initial customer 

requirements
– Build into J2EE framework, but start simple





More Info

• Javaone@extremejava.com


