eXtreme Development with
the Java™ 2 Platform,
Enterprise Edition (J2EE™)

Lessons from a B2B Start-up

Paul Hodgetts, Denise Phillips
Escrow.com

Oscar Chico
Sun Microsystems

Session Overview

 These are our experiences as a

B2B

e We'l

dot-com start up
nat we did
nat worked

nat didn’t work
cover a few significant topics

 There will be Q&A time at the end

— (Hint: We like to talk about XP!)

JavaOne

Overview of Topics

e Escrow.com Overview
 Challenges Faced

e Projects and Products
e System Architecture

* Architecture & Design
« Java Technologies
 J2EE Technologies

« XML/XSLT Technologies
* Tools

* Development Process
« Human Factors

Escrow.com Overview

 Provider of Transaction Settlement Solutions

— Coordinates payment/settiement, shipping,
Inspection services

* Founded October 1999 as a spin off a
major escrow & title transfer company

e Successive stream of products & services
— Escrow
— Open account, payment guarantees
— WIll call, staged payments, deposits
— Global trade services

e Im

Service Model

nlemented as a “BSP” (Business Service Provider)
Hosted applications plus back-office services

ntegrated a back end system providing
Individual services

Integrated as co-branded components of
partner site

— Avallable a stand-alone site

Challenges Faced

« Chaotically changing requirements
— Immature, rapidly changing B2B marketplace

e Critical time-to-market
— Broad competition in emerging market
— Market share needed to execute business plan

« Quality and service availability
— Financial services require strict controls
— Critical component in client’s business process

« Scalability and flexibility
— Market projected to grow rapidly
— Unpredictable client business requirements

Projects and Products

* “Version 17 - Initial “gold rush” system

— Two-tiered architecture
— ASP/VB Script, MS SQL Server

« “Version 2” - The “ultimate” platform
— Multi-tiered architecture
— ASP front end, Java/EJB middle tier, Oracle
— XML for external interfaces and “glue”

 “Version 3” - Business value focus
— Multi-tiered architecture
— Full J2EE technology base, Oracle

System Architecture

P

Integration Server D > i) Client Side
Ba ffice

Customer S External System (Client Side) S Admin
Partners Browser Browser . .
\ Service Providers
Integration Server H H
(Escrow.Com) Interface/Presentation Tier
Integration Interface
Web Interface Format Format Format Web Interface
Driver Driver Driver
Views Controller Interface Controller Views Controller

Application APIs
‘ Product A ‘ ‘ Product B ‘ ‘ Product C ‘ ‘ Common ‘ ‘ Profile Mgmt. ‘ ‘ Admin ‘

AQQllcat|0nT|er [T T T T T e System Services
' ! Notification SuA‘(:etrl\\:ilts)i,on
Application Logic | Workflow Engine N Security (eMail, fax, P 2
. XML) h
. . Reminders
Functional Event i BUSIE?]Z?”:UIES
/éccissl Validations Processing . Process Controller | Audit Document Exception
ontro ' , Logging Generation Handling
!)) ! Financial Imaging & System
| Business Process Tier : : Document Health &
—_—— Calculations
. k Mgmt. Status
Resource Tier e e
Service Connectors
Logistics Payment PKI Trust
Business Object Access Layer 9 Processing Authority Accounting

Workflow
Configurations

Business Rule Account & User

Definitions Profiles Transactions

e L e s

Service Provider Systems

Architecture and Design

» Broad J2EE blueprints provide a framework for
Incremental designs

« J2EE architecture inherently supports scalability,
reliability, availability

* Important to properly distribute business logic to
facilitate maintenance

« QOverall architecture has good subsystem
boundaries, very flexible
* Design patterns very effective
— Notification services
— Model-View-Controller
— Factories, other GOF patterns

Architecture and Design
(the dark side)

» Problems arose mostly from failure to
communicate, utilize and adhere to the
architecture

« Bad distribution of business logic hurt
maintainability and extensibility

 Short-changing desi?n time created
Implementation problems

 Failure to manage dependencies resulted in
brittle code

« Entropy needs to be attacked early to limit
redesign and/or rewrite costs

* NoO substitute for design expertise

Java Technologies

e Java APIs offer a wide range of functionality
 Enables rapid development — less code
* Well known and documented

« (Good support for object-oriented designs
— Interfaces enable decoupled components
— Reflection enables flexible factories

¢ Homogenous environment
e Easy to learn (for old C++ hacks)
* Popular and cool

Java Technologies (the dark side)

« Language missing some features
(generics, enumerations, overloaded

operators)
e Lots to learn
* Technology still developing

JavaOne

J2EE Technologies

« EJBs provide convenient transactional
support

e Session beans work great for distributed
components

» JSP/Servlets enable a homogeneous
environment front-to-back

* Challenges mapping our access control
needs to security model (JAAS?)

* New and cool

JavaOne

J2EE Technologies (e dark side)

e Entity beans

— EJB 1.x provides weak O-R mapping & finder
support

— 1:1 beans brittle, subject to database changes

— Added a lot of extra code with minimal pay
pack

— Lifecycle model can result in performance hits
— Debugging can be difficult

JavaOne-

e L e s

J2EE Technologies (e dark side)

« HTML/JSP Java conflicts (tag libraries?)
« JSP errors found later in deployment
 |ssues with cached JSP pages

« JDBC temptations to write lots of in-line
code

JavaOne

XML/XSLT Technologies

Used for:

— External integration interfaces
— Dynamic document generation
— Glue between ASP and Java

— XML Testing tool

Well known format for data exchange

— Many standards emerging (ebXML, cXML, BizTalk,
RosettaNet)

Text-based, easy to learn and manipulate
Good integration with Java, tools available
Self-describing and validating (DTDs, schemas)

XSLT provides powerful way to transform XML to
a variety of formats with minimal coding

New and cool JavaOne

e ——————

XML/XSLT Technologies

(the dark side)

* Emerging technology, competing
standards, adoption is slow

e Standards are evolving, incompatibilities

» Hierarchical data model requires mapping
to object model (e.q., Breeze, JAXB)

» Parsing and element access can be
tedious and error prone

« XSLT Is complex and cryptic
e Hard to find XML/XSLT gurus

JavaOne

Tools

BEA WebLogic Server
— Solid server with good standards support

Java IDEs (Jbuilder, Visual Cafe)

— IDEs primary value to have a consistent development
environment

- Cocclzle generation not widely used to maintain control of
code

e Jindent
— Enforces code formatting standards

« Jikes
— Much faster compiles, but some deviations from javac

Tools

« Apache Ant (future CruiseControl)
— Initial long build cycles lead to this tool
— Allows flexible builds and tasks
— Integrates testing with build (e.g., JUnit tasks)
— Ability to check out latest source code automatically
— Produces consistent build packages for deployment

o JUnit, HttpUnit (future Cactus)
— Vital for thorough unit testing and test first designs
— HTTPUnit enables testing of web conversations

e StarTeam Version Control

— Continuous Integration Possible with XP process
— Allow Integration in a distributed way

e Defau
e |nitial
e Attem

ted to typical dot-com
orocess was mostly ad

Development Process

evelopment
N0C

nts made to introduce e

ements of

more formal methods (e.g, RUP)

— Value of process not appreciated by
management or developers

— Process overhead considered too high

JavaOne

But that didn’t work...

« Several weeks per iteration for bug fixes
* Internal “customers” did not know product
e Specialists in disciplines and features

* Integration difficulties, manual and
Inconsistent testing

 Decreasing ability to respond to changing
requirements

 Time between releases grew
« Development effort became a “black hole”

We Needed a New Process

 Needed customer focus to deliver most
Important features quickly

« Had to work In a changing business
environment

« Searched for a lightweight, but rigorous
process

* Process visibility needed across the
organization

JavaOne

We Took On XP (not Windows XP)

 Up Front Training

— Initial JavaCon 2000 sessions

— XP Immersion for seed team

— On-site training and mentoring

— Self-directed research by developers
 Big bang cut-over

— Tried piecemeal adoption but not effective
« XP practices strictly followed

— Sink or swim approach

Growing Pains

 Resistance to change

 Environmental issues —common war room
and shared cubes

* Legacy code issues with testing and
refactoring

« Large team size created communication and
overhead difficulties

 Personality conflicts
« YAGNIvs. BDUF

. 'rll'eséfirst, micro-incremental development is
ar

Everyday Practices

All production code written in pairs
— Even when interviewing

Test first design
— Test — run — code — run — refactor — run — repeat
— JUnit & HttpUnit

Continuous Integration

Developers

— Make their own estimate and set velocity on yesterday’s
weather

— Pick their own tasks
— Pick their pair partner

Work on related tasks to complete stories

Iteration ends on end date; customer determines if
task / story continues in next iteration

JavaOne

e ——————

Tangible XP Benefits

* Able to sustain a consistent, rapid development
pace

* Organization always knows the complete current
project status

* Always have a correctly working, “shippable”
product at the end of every day
 Reduced QA cycles through intensive testing

— Pre-XP, 2 month development produced 3 week test
and fix cycle with 200 reported bugs

— Eost-XP, 2 month development produced 11 reported
ugs

JavaOne-

e ——————

Tangible XP Benefits

« System Is built to address immediate business
requirements

« Short, iIncremental iterations deliver small
working systems faster

« Clean, simple, documented code base enables
guick understanding and easier changes

 Collective development provides easier cross
training, mentoring, reduces truck factor,
continuous product reviews

* Process enables small teams to be hyper-
productive

XP Lessons

» XP pushes business requirement orientation
throughout organization

* Accountabllity for business and technical
decisions placed on appropriate parties

e Tough adjustment for some developers used to
more traditional development
— Developers give up private workspaces
— Need to become comfortable with exposing mistakes
« Emergent design is a viable alternative to big
design up front

— Less elegant initial solutions evolve, providing
collective understanding of designs

— Overall blueprint (metaphor) guides evolution E

Human Factors

« Job market in 1999/2000 very tight

e Qualified developers scarce
— Most have limited dot-com experience
— Object-oriented, J2EE expertise and experience limited
— Intelligence, motivation, curiosity vital

 Augmented in house talent with targeted
consulting expertise
— Sun Java Center — Architecture, Java, J2EE, Process
— Object Mentor — XP Process
— Ultimate Knowledge — Java, QA
— eBuilt — Java
— IRise — WebLogic
— Aquent — Ul Design, Web Development

Human Factors

 Team culture and dynamics important

— Group values (integrity, continuous
Improvement, intensity)

— Personalities and interactions

Team building needs to be carefully
considered

— Senior staff essential for core designs and
mentoring

* Environment should foster encouragement
and intelligent risk taking

JavaOne-

e ——————

If We Had to Do It Over Again

e Provide more up front training
— Object-oriented design principles
— J2EE architecture & technologies
« Dedicated time for continuous improvement

— Allocate specific time for project reviews
— Qvercome Inertia on tools, environment issues

If We Had to Do It Over Again

« Strong Focus on people & process
— Agile, rapid development process (e.g., XP)
— Careful team building, courage to restructure
e Don’t overbuild initial systems

— Focus on simple set of initial customer
requirements

— Build into J2EE framework, but start simple

Sun's 2000 Worldwide Java Developer Conference”

More Info

e Javaone@extremejava.com

JavaOne

