

© IEEE. Reprinted, with permission, from the Proceedings of the Agile Development Conference 1

Refactoring the Development Process: Experiences with the Incremental
Adoption of Agile Practices

Paul Hodgetts
Agile Logic, Inc.

phodgetts@agilelogic.com

Abstract

The goal of many current process improvement

efforts is to become more agile by adopting an agile
process. However, the results of several recent projects
suggest that when attempting to become more agile,
adopting an agile process is exactly the wrong thing to
do!

In this experience report, I discuss my failures with
wholesale process adoption and my successes using an
incremental adoption strategy based on metric- and
retrospection-driven feedback. Similar to refactoring
practices for design and code, this strategy identifies
“process smells,” and targets the worst of them with
specific agile practices drawn from several popular
agile processes.

1. Introduction

When an organization has chosen to adopt an agile
process, they have the option of adopting an entire
process wholesale, that is, a set of practices en-mass,
or of adopting only specific practices. Many process
experts advocate wholesale process adoption, citing
the need to experience the synergy of practices and the
danger of omitting supporting practices. Others
advocate an incremental approach to agile process
adoption, citing the need to temper disruptive change.

Over the past four and a half years, as a team coach
I have had the opportunity to assist several teams in
adopting agile development approaches on nearly a
dozen projects. Initially, I advocated a wholesale
adoption approach, but found the success rate to be
low. I then turned to an incremental adoption
approach, and experienced a much greater degree of
success. This experience report tells the stories of some
specific adoption experiences, both with wholesale
adoption as well as incremental adoption.

1.1. Subjects of the Experiences

Several teams are the subjects of the experiences
described in this report. These teams are briefly
described here. Unfortunately in some cases,
contractual obligations prevent the identification of the
specific organizations involved.
The Internet Start-Up. From 1999 through 2002,
Escrow.com, a provider of business-to-business e-
commerce solutions engaged in nearly a half-dozen
significant development projects, most of which were
conducted using agile processes. While some projects
experienced notable successes [1], some experienced
significant issues.

Escrow.com was notable in that they initiated a
complete transition to agile development. All parts of
the organization, from the developers to executive
management received training and participated in the
transition. Colocated working areas were designed and
built, placing business experts, quality assurance,
developers and management in close proximity.

Personnel were assigned to various product
initiatives, each of which had a dedicated agile team of
from four to eighteen members. Each team had its own
business expert and development team. Most teams
had at least one assigned QA engineer, although some
were shared.
The Control Systems Manufacturer. In 2002, a
manufacturer of control systems began a project
intended to update their aging software for the control
of maintenance systems in nuclear power facilities.
Unfortunately, the initial attempt to adopt an agile
process did not succeed, and the organization chose to
pursue non-agile process alternatives for subsequent
efforts.

The Control System Manufacturer chose to attempt
a limited adoption effort. A small subset of the
development group was assigned to the agile team. The

Refactoring the Development Process: Experiences with the Incremental Adoption of Agile Practices

team chose to forego initial training, and did not utilize
a common working area.

The team initially consisted of eight developers,
two QA personnel and a product manager, although
several team members were eventually shared with
other, non-agile projects.
The Government Workflow Project. From 2002
through 2004, the government of a major California
county initiated a project to automate the workflow of
key business processes in the criminal justice system.
After some initial adoption challenges, the project
achieved notable successes using agile practices, most
of which were incrementally adopted and refined.

The project was outsourced to a software
development firm, but the project was conducted at the
county’s facilities. The team at first worked within the
existing cubicle-based facilities, but within months had
negotiated to combine a group of cubicles into an open
work area within which the team was colocated. The
developers were dedicated to the project, and worked
full-time in the colocated space. The business experts
and QA engineers were employees of the county, and
were shared with other projects. They worked in the
colocated area while assigned to the project.

The size of the development team varied from three
to six developers. There were two business experts and
one QA engineer assigned to the team by the county.

2. Wholesale Process Adoption

Following the advice of several agile process
experts, on two occasions I attempted to lead a team in
adopting a complete agile development process at
once, including all required practices. In both cases,
the results did not achieve the desired success, but for
differing reasons.

The following sections describe two experiences
with a wholesale process adoption approach.

2.1. Partial Objections and Overall Resistance

The Internet Start-Up was experiencing growing
pains. After a year of rapid growth, the development
team had expanded from four to eighteen members,
and the product had grown from a single prototype to
several products in various stages of their lifecycle.
The team had started with virtually no organized
process beyond the informal habits of the individual
developers. As their informal process began to fail
under the larger team size and increasing business
demands, the team attempted to adopt practices based
on the Unified Process, but found little relief.

Several senior developers had been studying agile
processes, and had begun to experiment with agile
practices. Their experiments showed promise, and their
reputation with technical and corporate management
enabled them to begin a wider adoption effort. These
senior developers gained an understanding of agile
practices, primarily those of Extreme Programming, as
a result of their own study. The remaining developers
were trained in XP practices through training courses
and on-site coaching. The team’s technical leaders and
managers believed the entire team had sufficient
understanding of XP practices to utilize them on the
company’s critical projects, and a decision was made
to adopt the entire set of XP practices as the team’s
standard development process.

At first, some difficulties arose as the team
attempted to utilize the set of XP practices, but these
difficulties appeared normal for a typical adoption
effort. However, after nearly eight weeks of XP
development, persistent difficulties remained.
Although the team had success with the set of planning
practices, several key development practices, notably
test-driven development and refactoring, were not
producing satisfactory results. A closer examination
revealed the difficulties were primarily occurring with
a small number of developers. The team coaches and
senior developers attempted to increase the level of
training and mentoring with these developers.
Although the developers appeared to understand the
practices and acknowledged their ability to utilize
them, the situation did not improve. It appeared when
the developers utilized the practices on their own; they
intentionally failed to execute the practices correctly.

The situation baffled the team leaders. With no
outward expression of objections to the XP process,
and no evidence of inability to understand the
practices, it was not clear why these developers
consistently failed to correctly execute the process.
Eventually, it was necessary to remove these
developers from the critical projects. They became
increasingly dissatisfied with their role, and
unfortunately chose to leave the company.

During one developer’s exit interview, the technical
manager learned an important lesson. The developer
told the manager that while they believed they
understood and were able to execute certain XP
practices, they did not really believe those practices
were the right way to develop software. Although they
thought many of the XP practices were effective, their
objection to the few with which they did not agree
reduced their motivation and desire to execute the
overall process.

In retrospect, the team leaders concluded they had
not created an appropriate environment for the

© IEEE. Reprinted, with permission, from the Proceedings of the Agile Development Conference 2

Refactoring the Development Process: Experiences with the Incremental Adoption of Agile Practices

adoption of agile practices. While they had provided
sufficient training and mentoring for the team to
understand and execute the practices, they had not
created an open environment that allowed sufficient
opportunity for the team to discuss and agree to their
overall software development approach. This process
would have allowed the team to collectively decide if
an agile process was appropriate for their project and
more importantly what practices they would adopt.

Had the team initially adopted the smaller subset of
practices in which they all believed, it’s likely they
would have enjoyed early successes and been more
willing to adopt further practices. Although it was
unclear whether the few dissenting developers would
have agreed to adopt further practices, an incremental
approach would have earlier and much more clearly
revealed the practices to which they objected, probably
enabling the team to avoid the protracted problems that
affected their ability to deliver.

2.2. Too Much to Learn at Once

The Control Systems Manufacturer launched a
major effort to replace its aging control system. The
team of eight developers, two QA personnel and a
product manager previously used a heavyweight
waterfall process, but had experienced major
difficulties reaching successful project completion.

The team independently researched development
processes and decided to adopt an agile process.
Through their research, the team felt they had gained
sufficient understanding of agile practices to easily
adopt them. Despite the recommendations of their team
coach, they chose not to start with any up-front
training or preparation activities.

The team enthusiastically began the first two-week
development iteration. They immediately realized they
required some basic environmental support, such as a
common working area, workstation configurations and
an integration and build environment. At first, each
new activity required some degree of learning, and the
team frequently paused to conduct impromptu training
sessions for new practices. The first iteration’s
progress was not encouraging, and they delivered
almost no business value.

After some retrospection, the team felt their initial
experiences were isolated to the first couple of
iterations, and they would quickly ramp up their
development velocity as they put the initial adoption
overhead behind them. They proceeded to the second
and then the third development iteration. But they still
found their progress to be painfully slow. Although
they concluded their learning curve was larger than
they initially anticipated, they maintained hope the

majority of the learning was behind them, and
continued.

Two more iterations passed, and the project had
now been ongoing for ten weeks. Recognizing that the
project appeared to be experiencing difficulties, the
technical manager for the group intervened. His review
of the project revealed the project had delivered less
than 20% of the business value projected in the team’s
original release plans. After a series of intense
meetings, the manager concluded an agile process
approach should no longer be pursued, and mandated
that the team revert to their previous development
process. The team was demoralized by the decision.
Two key developers chose to leave the team soon after.

The team conducted one final retrospective, during
which they candidly discussed the causes for their
difficulties. They concluded that they severely
underestimated the affect of concurrent preparation
and learning activities on their ability to deliver
business value. They had committed to a development
velocity that was too large given the amount of
preparation and learning needed, and had thus set
unreasonable expectations with their manager and their
organization.

They also concluded that given their inexperience
with agile practices, it would likely have been
appropriate to perform some initial preparation and
training prior to attempting actual development.
Although their coach had suggested an “iteration zero”
to address these needs, the team did not fully
understand the reasons behind that recommendation.

In retrospect, they agreed the overhead of the basic
preparation and learning activities, combined with the
complexities of the actual development of their control
system, simply overwhelmed their capabilities. In the
end, this resulted in both a slower rate of learning as
well as a more reduced development velocity than
would have been achieved if some of the activities
would have been performed up-front in isolation.
Despite their initial enthusiasm and best intentions,
they were not able to overcome these difficulties.

3. Incremental Process Adoption

After a couple of painful failures with a wholesale
adoption approach, I turned to exploring an
incremental adoption approach, where the team would
target a limited number of new practices to adopt over
one or two iterations.

While my initial experiences with incremental
adoption showed promise, the results were uneven and
did not yield the rate of success I was after. Some
practices would be enthusiastically adopted and

© IEEE. Reprinted, with permission, from the Proceedings of the Agile Development Conference 3

Refactoring the Development Process: Experiences with the Incremental Adoption of Agile Practices

executed with much success. Some practices would be
met with difficulty or resistance, resulting in half-
hearted execution and poor results. While incremental
adoption was working better, something still wasn’t
right.

The order in which practices were adopted was
questioned. The teams had chosen which practices to
adopt next based on several factors. We looked for
practices we thought were easy to adopt given the
project context. We looked for practices that everyone
thought were a good idea. As coach, I often suggested
practices based on my knowledge of how one
supported the others. Once we decided which practice
to adopt next, we began practicing it “for its own
sake.”

Kent Beck, the founder of Extreme Programming,
talks about incrementally adopting XP “… one practice
at a time, always addressing the most pressing problem
for your team.” [2] Although we weren’t necessarily
adopting XP each time, we explored this approach.

Finding “the most pressing problem” proved to be a
challenge. We would identify problems such as “we
can’t roll into production on time.” Problems like this
generally had deeper root causes, for example, “we
can’t roll into production because we are finding last
minute bugs that we have to fix.” Even further analysis
revealed the bugs occurred because either developer or
acceptance testing was inadequate. As we reflected on
the identified problems, we tried to distill them down
to root causes. Inspired by Martin Fowler’s book on
refactoring [3], we named these root causes “Process
Smells.”

The following sections describe several experiences
with an incremental process adoption approach. Each
experience describes how the adoption of a specific
agile practice was facilitated by an immediate pressing
problem.

3.1. Test-Driven Development

The Internet Start-Up was actively chasing new
customers in the spring of 2001. The market was
extremely volatile and the business requirements were
rapidly changing, necessitating rapid cycles with
production releases occurring every few weeks. The
team at the time consisted of eight developers, a QA
engineer, and a product manager who was the business
expert.

Although the team was very productive
implementing new features, they faced a serious
problem delivering releases to production. When a
release candidate entered the quality assurance cycle,
an unacceptable number of issues were found that
delayed its release. Many of the issues were bugs, but a

noticeable number were variances from expected
behavior. Not only were the production releases being
delayed, but the project metrics showed the size of the
backlog was growing with new issues, deferred in the
interest of just getting a release out the door.

The developers used common engineering testing
practices that primarily consisted of performing
manual unit tests during the integration of new code
into the code base. QA employed after-the-fact testing
strategies that largely consisted of learning the features
as implemented, augmented with limited conversations
with the product manager, and then devising and
manually executing black box testing of the system. It
was apparent to the team that the developer testing
lacked sufficient coverage to adequately remove
defects, and that the QA testing was uncovering basic
requirements issues too late to correct them prior to
release.

Although the team did not employ a specific
retrospective practice, through informal discussions
they resolved to improve their situation. They
investigated and adopted both acceptance test-driven
as well as unit test-driven practices to address both the
defect as well as requirements issues.

The team’s QA engineer joined the analysis
sessions that occurred during iteration planning to
learn the features earlier in the cycle, and develop a
clearer understanding of the features directly from the
business expert. She decided to write acceptance tests
prior to development to provide clear specifications of
correct feature behavior. Although it proved
challenging to write acceptance tests ahead of time
because of various GUI testing tool issues, she was
able to able to write test outlines that provided
sufficient completion criteria to eliminate the larger
issues due to misunderstood requirements.

The developers adopted XP-style test-driven
programming practices. It proved fairly easy to drive
the majority of coding with unit tests, although
advanced unit testing practices such as mock objects
required several iterations to become effective. The
developers also utilized QA’s acceptance test outlines
as completion criteria for the overall features. They
required successful execution of all acceptance tests
for a feature before the feature could be considered
development complete.

Overall, adopting test-driven development required
several iterations to show significant results. It was
immediately apparent in the first iteration that the unit
test-driven practices were significantly reducing
defects caused by programming errors. Defect counts
of 20-30 per iteration prior to adoption, were reduced
to only a few per iteration. Adopting acceptance test-
driven practices was a more difficult effort, requiring a

© IEEE. Reprinted, with permission, from the Proceedings of the Agile Development Conference 4

Refactoring the Development Process: Experiences with the Incremental Adoption of Agile Practices

redefinition and reinvention of QA’s role in the
organization. The team’s collaborative approach
enabled QA and the business expert to develop
together an approach that was simple yet sufficient to
define the features and provide adequate acceptance
criteria. Within four iterations, the acceptance test-
driven approach resulted in a significant drop in new
tasks generated each iteration to repair features that
worked correctly but implemented undesired behavior.
Additionally, the crisper definition of new features
facilitated by the acceptance tests often resulted in the
avoidance of unnecessary work.

The adoption of test-driven practices allowed the
team to address a very real problem that was
preventing them from delivering production releases.
The motivation provided by their desire to succeed
allowed them to learn agile practices that were not
previously considered valuable.

3.2. Small Batch Size Development

The Government Workflow Project was well into
the development of their second major workflow when
they experienced frustrating velocity fluctuations and
inconsistent completion of features. The team tracked
their development velocity for each iteration in terms
of feature points completed. The project metrics
showed the iteration velocity dropped significantly
when scheduled features could not be fully completed
and spiked higher when partially completed features
from the prior iteration were finished.

At first, the team questioned why their velocity was
inconsistent, and searched for reasons their
productivity would fluctuate. However, they
discovered that the problem was not an inconsistent
rate of development. In reality, the team was quite
productive in terms of producing functionality each
day. What the team noticed was that their feature
estimates were often inaccurate. Further, the estimation
inaccuracies were not systemic, that is, the team could
not simply apply an adjustment factor to compensate.

The team typically performed feature estimation
when planning releases that encompassed around ten
iterations spanning several months in duration. In order
to accomplish the estimation and planning work in a
reasonable amount of time, the amount of analysis
done prior to estimating was just enough to estimate
the feature into general categories of large, medium
and small, approximately corresponding to a week,
half-week and day’s duration.

Through further retrospection, the team noticed that
many features were sized such that the feature estimate
was very close to the iteration length of one week. This
allowed little leeway in the event the feature required

additional time to complete, resulting in the inability to
complete the feature within the iteration. Large
features were also difficult to spread across multiple
developers in parallel, resulting in an inefficient use of
the team’s resources to accomplish the high priority
features.

For the next major feature release, the team
resolved to break down larger features into smaller-
sized ones, a practice recommended by many agile
process experts. They decided that they would target a
maximum feature size of a half-iteration, and further
break down any features that exceeded this limit. In
order to accomplish this, additional understanding of
each feature was required, and thus the team needed to
perform more analysis work at planning time.

Initially, the higher degree of up-front analysis was
felt to be very non-agile, and the team was concerned.
However, over time the team learned how to perform
just enough analysis, approximately a quarter to half-
hour for each day’s worth of feature development, to
gain sufficient feature understanding to drive finer-
grained feature breakdowns. Not only did the
developers learn to break the implementation of
features down into smaller-sized stories, but the
customer also learned to better judge the minimal
portion of a feature that was needed to provide the
most value in terms of workflow labor savings. This
allowed smaller features to deliver more overall value
to the project.

Despite the initial discomfort of longer and more
detailed release planning sessions, adopting finer-
grained feature breakdowns produced dramatic results.
The project metrics now showed a much more
consistent velocity from iteration to iteration. The
smaller features were now easily completed within the
iteration boundary, even if there were normal statistical
variances from the estimates. Additionally, the smaller
features were more readily distributed across the
available team resources, increasing the ability of the
team to opportunistically adjust work assignments to
complete higher-priority features.

The team initially had the belief that performing
additional up-front analysis was counter to agile
principles. However, once they found the courage to
try a more detailed planning approach, they
significantly improved their ability to plan the project.
In retrospect, the team realized this practice
implements the “smaller batch size” principle of Lean
Software Development [4], and in fact increased their
agility.

3.3. Pair Programming

© IEEE. Reprinted, with permission, from the Proceedings of the Agile Development Conference 5

Refactoring the Development Process: Experiences with the Incremental Adoption of Agile Practices

The Internet Start-Up’s agile team was initially
formed from an existing team organized around
specialties. There were several web client developers,
several middle-tier developers and a database
developer. Prior to adopting an agile approach,
developers seldom ventured outside their area of
specialty. It was often quite a challenge for the team
leads and project manager to organize and schedule
work to ensure everyone remained busy and
productive.

When an agile process was adopted, the team
learned about the generalist approach favored by agile
processes. The web client developers and the middle-
tier developers largely embraced the concept and
agreed to take on tasks from each other’s specialties.
The database work, however, was considered too
specialized by the team, and they felt all database
development should still be done by the single
database developer.

As the iteration progressed, the ability to share the
web client and middle-tier development across the
team allowed the team to schedule more parallel
features for development. This in turn allowed the
product manager to target several of their highest
priority features for simultaneous development,
thereby more quickly meeting their overall business
objectives.

Problems arose, however, when the product
manager chose several features that each required
significant database development. The database
developer became overloaded and could not meet the
needs of all the high priority features. This issue was
apparent when examining the iteration plans against
the overall product backlog. It showed lower-priority
features being assigned to an iteration before higher
priority features, simply because they required less
database development.

The team needed to break loose the bottleneck
around the single database developer. They considered
hiring another database specialist, but funds were not
available. Training an existing developer from scratch
would take too long. The team coach suggested that
the team try a pair programming approach to database
development. The team had previously rejected the
pair programming practice, and the suggestion met
once again with resistance. The coach reminded the
team that their inability to deliver the higher priority
features was adversely affecting the overall business,
and asked them to try a pair programming experiment
for several iterations, and then reflect on the results.
The team agreed.

At first, the bottleneck still existed because the
single database developer needed to be one of the pair
for each database task. However, much more quickly

than originally thought, the pair was able to split out
simpler database tasks to be worked on in parallel by a
second pair. The specialist then paired with a new
developer, further increasing the dissemination of the
skills, while the former apprentice paired with a new
developer, switching back to working with the
specialist when they got in too deep. Over just a few
iterations, many simpler database tasks no longer
needed the specialist involved, and allowed a much
more opportunistic scheduling of tasks to better
accommodate the customer’s priorities.

This team had originally objected to pair
programming as too wasteful of resources, and too
intrusive on each developer’s ability to concentrate on
the tasks at hand. Although the potential benefits of
pair programming were discussed, the team had
decided not to adopt the practice. Faced with a serious
problem that affected their ability to deliver, the team
reconsidered pair programming as a practice. Once
they were able to directly connect a potential benefit of
pair programming, cross-training that allowed better
distribution of tasks, to an immediate problem they
needed to solve, they developed the motivation and
courage to attempt a practice they had previously
resisted.

3.4. Metaphor and Refactoring

The development team on the Government
Workflow Project was nearing completion of its first
major release. The release had not gone well. At this
juncture, the development team consisted of three
senior and two junior developers.

Although there were several issues that had
hindered their progress, their retrospectives had
identified one issue in particular that they wanted to
target for improvement. Through examining their
tracking metrics, the team saw that any feature that
required new web interface development invariably
overran estimates in unpredictable ways. In fact, the
team had become so frustrated with progress on some
interface tasks, that they referred to some parts of the
interface code as “black holes,” and dreaded taking on
tasks in those areas.

The team devoted a few side meetings to discussing
the issue and reviewing these parts of the system. They
realized that the design and implementation of the web
interfaces had no underlying metaphor (an XP term for
conceptual model) guiding it. Although individual
developers had more or less adopted their own
personal approaches, the team had no shared best
practices and standards for the interface development.
Their first step was to figure out what the underlying

© IEEE. Reprinted, with permission, from the Proceedings of the Agile Development Conference 6

Refactoring the Development Process: Experiences with the Incremental Adoption of Agile Practices

metaphor needed to be, and an engineering task was
scheduled to do so.

By studying industry practices and refactoring
selected portions of the code base, the team was able to
fairly quickly arrive at a core metaphor that could be
evolved by further experience. Over just a few
iterations, the metaphor drove the design into a
framework within which new development could
quickly proceed. This greatly improved the quality of
new code and reduced the effort to implement new
web interface features considerably. The new
metaphor did not, however, magically cure the issues
with existing interface code.

The team determined that more refactoring was
necessary to avoid continued cost overruns when
working with the existing interface code. The code
base had accumulated a large amount of “debt” that
needed to be “paid off.” A concentrated refactoring
effort was not possible if the team was to continue to
deliver any reasonable amount of business value. So
the team decided to spin off smaller refactoring tasks
whenever a new feature was scheduled that touched
existing interface code. The refactoring effort would
increase the time to complete the feature, but would
incrementally pay off a portion of the debt as well.

The team also resolved to take heed of the lesson,
and to be more mindful of refactoring any new code
added to the system to prevent debt from
accumulating. A positive side effect of the effort was
that the team developed better overall definitions of
“goodness” (standards and best practices) to guide
their choices in the future.

The team made considerable progress cleaning up
the web interface code, and virtually eliminated
creating new code that was not clean. The new
metaphor worked very well, and inspired the team to
create similar metaphors for other parts of the system.
Although it took many iterations of incremental
refactoring to achieve, work in this part of the system
is now considered cool and fun.

3.5. Sufficient Analysis

The time came for the Government Workflow
Project to once again plan for a new release cycle.
Unfortunately, once again the release planning session
did not proceed smoothly. The team of two business
experts and three developers utilized an Extreme
Programming-based process where the business
experts were assumed to bring a set of prioritized
features to each planning meeting.

However, as the planning session progressed the
team had a great deal of difficulty finalizing a set of
features for the release. The business experts could

describe general features, but were unable to provide
sufficient details. They often needed to conduct further
investigation before they could provide the necessary
information. The team was confused on how to
proceed. They needed to complete their planning
session in order to move on to development, but lacked
sufficient definition of the features to break them down
into meaningful development tasks. Instead they ended
up creating a number of “analysis tasks” that were
placeholders for continued feature discussions once the
business experts had researched the pending issues,
and moved on to develop the portion of the features
that were sufficiently defined.

This approach quickly created additional problems.
Since perhaps one-third to one-half of an iteration was
left for further definition, the team lacked clear
completion milestones for the iteration. With an
uncertain amount of work represented by the skeletal
features, it was common for features to be left partially
completed at the end of each iteration. The lack of
success milestones was negatively affecting the team’s
morale.

The team reflected on their process for developing
feature definitions, and discovered they had
unreasonable expectations of the business experts. The
business team was built around domain experts. While
they knew the business very well, they were not skilled
in analyzing their business process and creating a
specification for a software implementation to support
it. The team concluded that the business team needed
the expertise of a professional analyst to assist the
domain experts.

A dedicated analyst was not available, but a couple
of the developers had sufficient analysis skills to help.
They dedicated a portion of their time each week to
work with the business team. This allowed the
business team to put sufficient forethought into the
features prior to planning time, enabling the planning
discussions to proceed quickly. Over just a few
iterations, the developers were able to teach the
business experts sufficient analysis skills that the
amount of time required to coach the customer team
gradually declined to only a few hours a week.

4. Retrospective

My initial experiences with wholesale agile process
adoption were not very successful. In the case of the
Internet Start-Up, the organization overcame the initial
difficulties and went on to achieve much success with
agile processes. In the case of the Control Systems
Manufacturer, the initial difficulties were more than

© IEEE. Reprinted, with permission, from the Proceedings of the Agile Development Conference 7

Refactoring the Development Process: Experiences with the Incremental Adoption of Agile Practices

© IEEE. Reprinted, with permission, from the Proceedings of the Agile Development Conference 8

the organization was willing to tolerate, and the overall
agile adoption effort failed.

Looking back on these wholesale adoption efforts,
several key mistakes can be identified. In the case of
the Internet Start-Up, the adoption effort was initiated
without sufficient consensus of the team. By
mandating the adoption of an agile process despite the
objections of several team members, management
created an environment where outward dissention was
discouraged, and instead produced more subtle
dissention that significantly hindered the project’s
success.

In the case of the Control Systems Manufacturer,
the adoption effort was initiated without substantial
preparation, both in terms of training as well as
environmental factors such as workspaces and tools.
While I believe it is possible for a team to
incrementally perform such preparation, in this case
the team drastically underestimated the cost of such
concurrent work and the resulting decrease it would
have on the rate of delivery of product features. By
creating unrealistic expectations with their release
plans, they sowed the seeds for an unfortunate
meltdown as the expectations were increasingly unmet.

If I were to attempt another wholesale adoption
effort, I would certainly address these issues. I would
ensure the team was deeply involved in the decision to
adopt an agile process and had reached a unanimous
decision to do so, perhaps using the McCarthy’s
Decider protocols [5]. I would also ensure that the
team had adequately prepared for the adoption effort.
My preference is to now conduct some initial training
for the team as well as initial environmental set up
prior to attempting actual feature development.

But even with these precautions, my opinion is that
wholesale agile process adoption is a risky endeavor.
The transition to an agile approach introduces quite a
bit of disruptive change to an organization.
Concentrating all the disruptive change into a short
period of time can overwhelm an organization or
produce significant discomfort and resistance.

My experiences with incremental agile process
adoption have been very successful. After the initial
difficulties at the Internet Start-Up, the team retreated a
bit and chose a smaller set of core practices on which
to focus, including basic planning practices, short
iterations, pairing, frequent releases and as much
testing as they could manage. The team felt these
practices implemented the basic cycles and rhythm of
an agile process, as well as provided enough feedback
for improvement. The team continuously added,
modified and sometimes removed practices over the
course of nearly a dozen projects involving half-dozen
separate teams.

On the Government Workflow Project, the initial
team had adopted agile practices, but had experienced
some difficulties. When I joined the project, the team
was not delivering business value on a regular basis,
and the customer had begun to lose confidence in the
team. Similar to my prior incremental experiences, I
coached the team to focus first on better iteration and
release planning, and then on establishing their core
rhythm through short iterations, delivering working
software, retrospectives and continuous learning. The
team continued to improve dramatically over the next
year, eventually establishing a highly effective agile
process that produced significant business value and
satisfied customers.

Through these experiences, a key factor emerged
that correlated to success when adopting agile
practices. It seemed I had greater success with a
targeted adoption approach. Because the team had
identified very real issues they were trying to solve, the
adoption of practices was highly motivated. Each
practice had an identifiable purpose, rather than being
adopted “just because we should.” Over time, each
team eventually employed a wide array of agile
practices as they incrementally adopted them to solve
issues. Although they may not have ended up doing a
“complete” or “official” agile process, like XP or
FDD, it would be difficult to argue they did not have
an “agile process.”

It is my hope that others may recognize these
experiences in their situations and perhaps gain some
new ideas and approaches to solve their immediate
issues and successfully adopt agile processes.

5. References

 [1] Paul Hodgetts and Denise Phillips, “Extreme Adoption
Experiences of a B2B Start-Up”, Extreme Programming
Perspectives, Addison-Wesley, 2003, pp. 355-362.

 [2] Kent Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley, 2000, p. 123.

 [3] Martin Fowler, Refactoring: Improving the Design of
Existing Code, Addison-Wesley, 1999, pp. 75-76.

 [4] Mary Poppendieck and Tom Poppendieck, Lean
Software Development: An Agile Toolkit, Addison-Wesley,
2003, pp. 77-81.

 [5] Jim McCarthy and Michele McCarthy, Software for Your
Head: Core Protocols for Creating and Maintaining Shared
Vision, Addison-Wesley, 2002, pp. 117-147.

	1. Introduction
	1.1. Subjects of the Experiences

	2. Wholesale Process Adoption
	2.1. Partial Objections and Overall Resistance
	2.2. Too Much to Learn at Once

	3. Incremental Process Adoption
	3.1. Test-Driven Development
	3.2. Small Batch Size Development
	3.3. Pair Programming
	3.4. Metaphor and Refactoring
	3.5. Sufficient Analysis

	4. Retrospective
	5. References

