
Can RUP Be Agile?
Can RUP Be Extreme?

Orange County Rational Users’ Group
January 20, 2005

By Paul Hodgetts, Agile Logic www.AgileLogic.com



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Introductions



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Solutions for Delivering Your Projects:
Agile Process Adoption Solutions
Coaching, Consulting, Mentoring Services
Training in Agile Processes, Software 
Development and Enterprise Technologies
Turn-Key Software Development Projects

Fullerton, CA, based
Founded 2001 by industry veterans
Contact info: www.agilelogic.com (866) 64-AGILE



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Paul Hodgetts

Team coach, trainer, consultant, developer
Founder and CEO of Agile Logic
22 years overall, 5 years agile experience
Certified ScrumMaster Trainer
Innovator in Agile business and project management
Author (Extreme Programming Perspectives)

Presenter at conferences (ADC, XPAU, JavaOne)

Agile Alliance Program Director
Member of CSUF agile advisory board
Contact info: phodgetts@agilelogic.com



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Agenda

Development Processes
Process Attributes
Process Spectrum
Unified Process
Agile Processes
Process Contexts
UP/RUP and Agility



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Development Process

Common understanding of “how we do things 
around here”
Process can provide:

Guidance on what to do, when, by who
A framework for coordination
Instrumentation points
Guidance on sufficiency and completeness



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Process Improvement

Looking for better ways to do things

Not “doing a process” for its own sake

Increasing our capability to deliver software

Adoption strategies – incremental to wholesale



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Agenda

Development Processes
Process Attributes
Process Spectrum
Unified Process
Agile Processes
Process Contexts
UP/RUP and Agility



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Process Attributes

What kinds of things can we look at to 
better understand and discuss processes?



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Activity Sequencing

Phased Approach
Gathers similar activity types together
Preference towards serial completion
Ultimate in phased approach is waterfall

Concurrent and Parallel
Activities occur opportunistically
Activities of all types happening at same time
Partial completion considered the norm



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Delivery Strategy

Defined by degree of iteration and increments
Iterative

Repeatedly executing a process cycle
Iterations provide synchronizing points
Iterations provide feedback points

Incremental
System is built in progressive stages
Iterations add features and refinements
Each increment has a degree of completeness



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

People Strategies

Collaborative vs. Heroic
Individual vs. Collective
Decision Structure:

Hierarchical, “command and control”
Flattened, local empowerment

Assigned vs. Accepted Accountability
Degree and Range of Responsibility
Fixed vs. Flexible Roles



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Predictive Planning and Control

Predict and plan expected activities
Management by controlling activities per plan
Change is minimized and managed via change 
control



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Adaptive Planning and Empirical Control

Prioritized set of deliverables form the plan
Opportunistic execution of activities to create 
deliverables
Management via feedback and adaptation
Empirical process control

Visibility
Inspection
Adaptation



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Project Balancing

Resources
Time
Scope
Must be in balance for a healthy project

Time Resources

Scope



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Resource Variable

Staffing is usually the least effective variable to 
adjust.

Staffing increases have long lead times.
Increased intensity has diminishing returns.
Team culture requires some degree of stability.

Tools and technology can provide benefits.
Effective tools provide continuing benefits.
Front-end costs need to be carefully amortized.
The wrong tools and technology increase friction.



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Time Variable

Can be the most painful variable to adjust
Early commitments are usually date-based.
Target dates are often the most important 
objective.
There’s only so many hours in a day, and they 
pass by regardless of how we use them.



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Scope Variable

Can be the most effective variable to adjust
Can adjust scope breadth – what’s included.
Can adjust scope depth – refinement.
Partial scope can often generate immediate 
returns.
It is often preferable to reach a date with 
partial scope completely finished, rather than 
complete scope partially finished.



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Prescription

Prescriptive is like a cookbook:
What to do
When to do it
How to do it

Creative
Local decisions
Context determines activities



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Formality and Ceremony

Formality specifies:
Types and forms of work products
Procedures for activities

Ceremony specifies:
Level of activity surrounding events
Degree of audit trails
Types and forms of communications



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Rigor

Rigor is the precision and completeness in the 
execution
Rigor is not a process attribute
Rigor is about the way the team approaches 
and executes their process
A process may provide guidance and practices 
to encourage rigor



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Discipline

Discipline is about conscientiousness, courage,  
motivation, “doing the right thing”
Discipline is not an attribute of a process
Discipline is about the way the team 
approaches and executes their process
A process may encourage discipline by the 
provided activities and criteria



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Agenda

Development Processes
Process Attributes
Process Spectrum
Unified Process
Agile Processes
Process Contexts
UP/RUP and Agility



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Chaotic Processes

Minimal shared process

Code and fix

Short term decisions

Can sprint very fast

Does not scale

Increasing debt
Quality, design, integration, knowledge



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Bureaucratic Processes

Targeted for all contexts
Large and complex
Mandated activities
Comprehensive framework
High overhead
Long release cycles
Inability to keep up with business needs



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Options for Process Improvement

“Heroic” Approach
Relies heavily on individual effort
Difficult to plan, results unreliable
High risk of failure
Heavy human cost



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Options for Process Improvement

“Formal” Methodologies
Detailed, bureaucratic process
Engineering/construction-style planning –
predictive of activities
Expensive, time-consuming to implement
Limited success, not popular with teams



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Options for Process Improvement

“Agile” Methodologies
Just enough process
Adaptive rather than predictive
People-oriented focus to the process
Faster and less-costly to implement



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Agenda

Development Processes
Process Attributes
Process Spectrum
Unified Process
Agile Processes
Process Contexts
UP/RUP and Agility



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

UP Background

Objectory Process (1987-1995)
Ivar Jacobsen at Ericsson

Rational Objectory Process (1996-1997)
Rational approach (Philippe Krutchen)
UML

Rational Unified Process
Grady Booch, Jim Rumbaugh, other sources
Rational tool set



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Characteristics of the UP

A process framework, not a specific process
Refined into a specific process instantiation

Tailored to a Development Case

Very broad coverage
All activities and work products are optional
Encourages minimal development case



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

UP Values

Use-case driven
Architecture-centric
Iterative and incremental
Attack risk early
Deliver executable architectures (systems)
Provoke and accommodate change early
Baseline architecture early
Prefer component-based designs



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

UP Roles

Large collection of roles
Roles organized around disciplines
Roles further specialized
UP encourages cross-functional teams



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

UP Work Products

~50 non-software work products
Vision, risk list, iteration plan, use case 
model, design model

All are optional, some are recommended
Work products are information abstractions
Organized within disciplines

Requirements, design, project management



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

UP Activities and Workflows

Large collection of activities to support the 
creation of artifacts
Guidance provided for each activity
Strong assignment of roles to activities
Activities and workers grouped into workflows



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

UP Activity Sequencing

Iterative and incremental
Iterations classified into “phases”

Inception, elaboration, construction, transition

Milestone objectives define boundaries



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

UP Characteristics

Sequencing and delivery is iterative and 
incremental, with some phasing
Encourages collaboration, but pretty strong 
individual role assignments
Activities suggest predictive planning
No preference for balancing strategy
Very prescriptive, although lots of options
Formality and ceremony optional



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

UP vs. RUP

The Unified Process
Broad framework
Many optional activities and work products
Tool support optional and  unspecified

The Rational Unified Process
A specialization of the UP, still a framework
A licensed product
Templates for work products
Tailored to Rational toolset



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Agenda

Development Processes
Process Attributes
Process Spectrum
Unified Process
Agile Processes
Process Contexts
UP/RUP and Agility



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

What Exactly Is an “Agile” Process?

Focus on adaptability and responsiveness
Built around core strategies:

Iterative and Incremental Development (IID)
Adaptive project management
Collaborative, “whole team” approach
Common shared vision and goals

Constructed from “best practices”:
Emphasis on simplicity, lightness, 
communication, self-directed teams, quality 
and technical excellence



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The World of Agile Processes

Extreme Programming (XP)
Feature-Driven Development (FDD)
Scrum
DSDM (Dynamic System Development Method)
Crystal Family of Processes, e.g. Crystal Clear
Lean Software Development
Adaptive Software Development (ASD)
Others: MSF Agile, Agile UP/RUP, Evo, Win-Win Spiral



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Agile Alliance

2001 – representatives from agile processes meet in 
Snowbird, Utah.
Agreed on a “manifesto” of values and principles:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

“That is, while there is value in the items on 
the right, we value the items on the left more.”



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

History of Extreme Programming

Early Influences
Incremental, stakeholder-driven design process from 
Alexander
Programming as learning from Papert, Kay

Kent Beck & Ward Cunningham
Mid-80s – Pair programming at Tektronix
80s, 90s – Smalltalk culture produces refactoring, 
continuous integration, constant testing, close 
customer involvement
Generalized to other environments
Early 90s – Core values developed within patterns 
community, Hillside Group



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

History of Extreme Programming

1995 – Kent summarizes in Smalltalk Best 
Practices
1996 – Ward summarizes in Episodes
1996 – Kent adds unit testing, metaphor at 
Hewitt
1996 – Kent takes on Chrysler C3 project
C3 adds Ron Jeffries as coach
Practices refined on C3, published on Wiki



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

History of Extreme Programming

Scrum practices incorporated and adapted as 
planning game
1999 – Extreme Programming Explained
1999 – Fowler publishes Refactoring
1999 – XP Immersion held, e-group formed
2000 – more books, first conferences
Evolution continues through today
2004 Kent Beck releases EPE 2nd Edition



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

What Is Extreme Programming?

XP is a specific instantiation of an agile process
XP combines best practices in a different way
XP is a different approach to development
XP provides a core process model
XP is not intended to be a complete framework



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Emergence

XP provides values and principles to guide team 
behavior
Team expected to self-organize
XP provides specific core practices
Each practice is simple and self-complete
Combination of practices produces more 
complex emergent behavior
Synergy of practices still not fully understood



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Why Is It Called “Extreme?”

Selected the minimal set of effective practices
“Turned the knob up to 10” on each practice

Very short cycles (planning game)
Continuous code reviews (pair programming)
Extensive testing (unit testing, acceptance testing)
Continuous integration
Constant design improvement (refactoring)
Continuous architecture refinement (metaphor)
Etc…



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

XP Values

Communication
Simplicity
Feedback
Courage



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

XP Principles

Rapid Feedback
Assume Simplicity
Incremental Change
Embracing Change
Quality Work
Teach Learning
Small Initial Investment
Play to Win

Concrete Experiments
Open Honest 
Communication
Work With Instincts
Accepted Responsibility
Local Adaptation
Travel Light
Honest Measurement



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

XP Project Community

Emphasis on the “Whole Team”
Collaboration and colocation
Three general roles

Customer
Developer
Manager

Roles define areas of accountability
Specific job functions neither specified nor 
excluded (e.g., QA, PM, operations, etc.)



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

XP Process Cycle

XP is iterative and incremental
XP is driven by time-boxed cycles
The rhythm of the XP process is crucial

Episodes

Product
Life Cycles

Releases

Iterations

Tasks



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

XP Process Cycle

Charter Release Release Release Release Wrap Up

Planning Iteration Iteration Iteration Delivery Retrospect

Planning Task Task Task Build & Test Retrospect

Pull Task Episode Episode Episode Story Test Retrospect

Pair Up TDD TDD TDD Integrate Retrospect

Write Test Write Code Refactor

1 to 6 months

1 week to 1 month

½ to 2 days

15 minutes to 2 hours

5 to 30 minutes



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

The Original 12 XP Practices

On-Site Customer 
The Planning Game 
Small Releases 
Testing 
Simple Design 
Pair Programming 
Refactoring 
Continuous Integration 
Collective Ownership 
Coding Standards 
Metaphor 
40-Hour Week



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Evolving Practices
On-Site Customer

Whole Team
The Planning Game

Release Planning
Iteration Planning

Testing
Acceptance Testing
Unit Testing
Test-Driven Development

Refactoring
Design Improvement

40-Hour Week
Sustainable Pace



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Additional Practices

Stand-Up Meetings
Tracking & Metrics 
Retrospectives
Big Visible Charts
Team Culture 
Consensus 
Skunk Works, War Room 
Version & Configuration Management, 
Automated Builds, Build Promotion



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

XP Characteristics

XP is iterative and incremental, there are no phases
Each iteration intended to be shippable
XP is highly collaborative

Collective control and ownership
Self-organizing teams
Basic role structure, assumes flexibility

XP utilizes adaptive planning
Preferred balancing strategy is via scope
XP is creative overall, prescriptive at the practice level
XP discourages unnecessary formality and ceremony



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Agenda

Development Processes
Process Attributes
Process Spectrum
Unified Process
Agile Processes
Process Contexts
UP/RUP and Agility



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Process Context

Factors to consider when choosing process
Personnel 

Dynamism 
(% Requirements-change/month)

Culture 
(% thriving on chaos vs. order)

Size 
(# of personnel)

Criticality 
(Loss due to impact of defects)

50
30

10
5

1

90

70

50

30

10

3

10

30

100

300

35

30

25

20

15

Essential 
Funds Discretionary 

Funds Comfort

Single 
Life

Many 
Lives

(% Level 1B) (% Level 2&3)

0

10

20

30

40

Agile

Plan-driven

Personnel 

Dynamism 
(% Requirements-change/month)

Culture 
(% thriving on chaos vs. order)

Size 
(# of personnel)

Criticality 
(Loss due to impact of defects)

50
30

10
5

1

90

70

50

30

10

3

10

30

100

300

35

30

25

20

15

Essential 
Funds Discretionary 

Funds Comfort

Single 
Life

Many 
Lives

(% Level 1B) (% Level 2&3)

0

10

20

30

40

Agile

Plan-driven

Source: Balancing Agility and Discipline, Boehm & Turner



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Agenda

Development Processes
Process Attributes
Process Spectrum
Unified Process
Agile Processes
Process Contexts
UP/RUP and Agility



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

XP and RUP

XP plug-in for RUP from IBM/Rational
Available from http://www-106.ibm.com/developerworks/rational/library/4156.html



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

Can RUP Be Agile?

RUP is a flexible framework
RUP is often over-implemented

Subtractive vs. additive process design

Where RUP pushes against agility
Prescriptive nature of the framework
Tendency towards predictive planning

RUP can and has been implemented in an agile 
way



Copyright © 2004, Agile Logic, Inc. All Rights Reserved

References and Resources
Extreme Programming Explained (2nd edition)

By Kent Beck

Software Development for Small Teams
By Gary Pollice, et al

Balancing Agility and Discipline
By Barry Boehm & Richard Turner

Lots and lots of other XP and RUP books
Ron Jeffries’s XP Site

www.xprogramming.com
IBM Rational’s RUP Site

www-306.ibm.com/software/awdtools/rup/index.html
XP Discussion List

groups.yahoo.com/group/extremeprogramming/
(Lots of other great Yahoo! groups.)

The Agile Alliance Site
www.AgileAlliance.org

Agile Logic’s Resources Site
www.AgileLogic.com/resources.html

So. Cal. Agile / XP User Group
groups.yahoo.com/group/xpsocal/


